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OPINION 

The Computational biology and deep learning 
John Rim 

INTRODUCTION 

he machine learning methods are generic methodologies for 
discovering functional correlations from data without having to 

describe them beforehand. The capacity to construct 
predictive models without making significant assumptions about 
underlying processes, which are typically unknown or inadequately 
characterised, is appealing in computational biology. For 
example, the most accurate prediction of gene expression levels is 
presently performed using sparse linear models or random 
forests; how the selected features affect the transcript levels is 
still a study issue. Machine learning algorithms are used in 
genomes, proteomics, metabolomics, and sensitivity to chemicals. 
The classic machine learning workflow, which includes four steps: 
data cleaning and pre-processing, feature extraction, model fitting, 
and assessment, may be used to characterise the majority of these 
applications. When available, one data sample is labelled with its 
response variable or output value y (typically a single number) and 
includes all covariates and characteristics as input x (commonly 
a vector of numbers). Data pre-processing, feature extraction, 
model learning, and model assessment are the four processes 
in the traditional machine learning workflow.  Supervised machine 
learning methods link input characteristics to an output label y, 
whereas unsupervised methods learn aspects without using labels 
that have been seen.  Many traditional machine learning 
algorithms struggle with high-dimensional input data that 
is complicatedly connected to the associated label. Higher-
level characteristics retrieved with a deep model, on the other hand, 
maybe able to better differentiate across classes. Deep networks 
develop progressively abstract feature representations from raw data 
using a hierarchical framework.

An artificial neural network is made up of layers of interconnected 
compute units that are inspired by neural networks in the brain 
(neurons). The number of hidden layers in a neural network 
correlates to its depth, and the maximum number of neurons in one 
of its layers corresponds to its breadth. Artificial neural networks 
were renamed "deep networks" when it became feasible to train 
networks with higher numbers of hidden layers. The network takes 
data in an input layer, which is then modified nonlinearly through 
numerous hidden layers until final outputs are generated in the 
output layer in the canonical configuration (panel A). All neurons in 
the preceding layer are linked to neurons in the hidden or output 
layer. Each neuron calculates its output f(x) using a weighted sum of 
its inputs and a nonlinear activation function (panel B). The rectified 
linear unit (ReLU; panel B) is the most common activation function, 
which filters negative impulses to 0 and passes through positive 
signals. The weights w(i) between neurons are free parameters that are 
learnt from input/output samples and encapsulate the model's 
interpretation of the data. Learning minimises the loss function L(w), 
which gauges the model output's fit to a sample's true label (panel A, 
bottom). The loss function is high-dimensional and non-convex, 
analogous to a landscape with numerous hills and valleys, making 
reduction difficult. It took several decades for the backward 
propagation approach to be used to generate a loss function gradient 
through the chain rule for derivatives, allowing for fast stochastic 
gradient descent training of neural networks. The predicted label is 
compared to the genuine label during learning to compute a loss for 
the current task. 

T

Rim J. The Computational biology and deep learning. J Biomed 

Eng: Curr Res. 2022; 4(2):9. 

ABSTRACT 
The explosion of molecular and cellular profile data from vast 
numbers of samples has resulted from technological developments in 
genomics and imaging. Traditional analytic methodologies are being 
tested by the fast rise in biological data dimension and collection rate. 
Modern machine learning approaches, such as deep learning, promise 

to make accurate predictions by using very large data sets to identify 
hidden structure. We explore regulatory genomics and cellular imaging 
applications of this new breed of analytic techniques in this study. We 
give an overview of what deep learning is and how it may be used to 
obtain biological insights in various scenarios. We emphasise potential 
dangers and restrictions to educate computational biologists when and 
how to make the most of this new tool, in addition to showing 
particular applications and offering recommendations for practical use. 
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