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ABSTRACT 

In the field of applied mathematics, fractional calculus is used to contract 
with derivative as well as the integration of any power. Different definitions 
of the fractional derivative have been introduced in the literature. For 
example, these are some important definitions of fractional derivatives, 
Riemann-Liouville derivative, Caputo derivative and conformable derivative. 

Recently the generalization of the conformable derivative has been given 
as M-fractional conformable. Fractional differential equations (FDEs) 
“equations involving fractional derivatives” are employed invarious areas 
of science and engineering and others [1-5] have widely been interested. 
That’s why they have gained many attractions from many researchers. To 
acquisition, the analytical solutions of the FPDEs is a conspicuous look of 
scientific research. 
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INTRODUCTION 

onsequently, numerous scholars have developed some persuasive 
methods to acquired approximate and exact solutions for these types 

of FPDEs. In this investigation, the truncated M-fractional conformable 
(STO) and (3 + 1)-dimensional KdV-ZK equations are considered. The 
novel method: (m + G’ )-expansion method are utilized to extract the exact 
solitons of the aforesaid model equations. Different definitions of fractional 
derivatives have appeared in the literature. For example, Reimann-Liouville 
[1], Caputo derivative and conformable derivative. Despite these two most 
recent definitions are reported as M-fractional conformable and beta 
derivatives. Many powerful techniques have been reported in the literature 
for finding exact solutions, see for example [5-9]. Fortunately, it is possible to 
establish a traveling wave transformation for a fractional order PDE which 
can convert it to a nonlinear ordinary differential equation (NODE) that 
can be easily solved by using a variety of different methods. There are many 
distinct techniques have been applied to gain the exact solitons of (STO) 
and (3 + 1)-dimensional KdV-ZK equations like : F-expansion method and 
Improved - expansion methods are used to obtain the bright, dark 1-soliton 
and other soliton solutions [10], new extended direct algebraic technique is 
implemented to gain the number of new type of solitons of the conformable 
fractional (STO) equation [11], dark and bright optical solitons gained by 
variable coefficient method [12], dispersive exact wave solutions are observed 
by modified simplest equation method [13], different optical solitons of the 
(STO) equation are achieved by applying the extended trial method [14], 
Extended sinh-Gordon equation expansion scheme has utilized to obtain 
different types of optical solitons of STO equation [15], extended auxiliary 
equation scheme is applied to gain the dispersive optical wave solitons of 
time-fractional (SH) equation along power law non-linearity as well as Kerr 
Law non-linearity [16], undetermined coefficient method is implemented 
to gain the distinct kinds of dispersive exact solitons in the presence of 
several perturbation terms are achieved [17], with the use of tanh- coth 
integration algorithm dispersive solitons in optical nanofibers are obtained 
with constraint conditions [18], by using the Sine-Cosine function method, 
different exact solutions are obtained [19], Sech, Tanh and Csch function 
techniques are utilized to gain the optical solitons of (STO) equation along 
Kerr law non-linearity [20]. There are many applications of the Sine-Gordon 
expansion method and (m + G′/G) -expansion method. For instance, with the 
use of Sine Gordon-expansion scheme, distinct kinds of solitons of the non- 
linear time-fractional Biological Population equation and the Cahn- Hilliard 
model have been obtained in [21], hyperbolic and trigonometric functions 
solitons to the non-linear reaction diffusion equation have achieved [22] etc. 

Similarly,  (m  +  G′/G)-expansion  method  has  been  utilized  to  solve  the 
Pochhammer-Chree equations for bell-shaped, kink-shaped and periodic 
type solitons of with the help of this method [23], discrete and periodic type 
solitons of the Ablowitz-Ladik lattice system are found [24] etc. 

To find the exact solutions of integrable partial differential equations is 
the most interesting topic. Therefore, we will solve two integrable model 
equations namely space-time fractional Sharma Tasso-Olever (STO) and 
space- time fractional (3+1)-dimensional KdV-ZK equations for a variety 
of  solitons  with  a  novel  derivative  operator  by  employing  (m  +  G′/G)- 
expansion method: Abundant M-Fractional Exact Solutions for STO and 
(3+1)-Dimensional KdV-ZK Equations via (m + G′/G)-Expansion Method 

2 Description of (m + G′/G)-Expansion method 

In this section, the basic concept of the (m + G/G) method are illustrated 
as bellow: 

Step:1 

Assume that the general form of NLPDE is expressed as 

P (u, ux, ut, uxx, .......) = 0. (1) 

Suppose the Wave transformation takes the following form: 

u(x, t) = U (ξ), ξ = x + ν(t) (2) 

Inserting eq.(2) into eq.(1),we obtain 

P (U, U,, U,,, ........) = 0. (3) 

Step:2 

Suppose that the trial solution of eq.(3) is given by 

        (4) 

where cn, n = 0, 1, , , , , , , , n and m are nonzero constants. 

According to the principles of balance,we find the value of n.In this article 
we define F as 

 

  (5) 

where G(ξ) satisfies,the second order nonlinear ODE: 
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GG′′ = pGG′ + qG2 + r(G′)2 (6) 

The Cole-Hopf transformation F = ln(G(ξ))ξ = G’(ξ) reduces equation into 
the Reccati equation 

F′ = q + pF + (r − 1)F 2 (7) 

Substitute equation (4) including Eq. (7) and Eq. (5) into Eq. (3), then we 
will obtain polynomials in [d + G’(ξ) ]j and 

[d + G’(ξ) ]−j ,(j = 0, 1, 2, 3, , N ). 

Collect each coefficient of the resulting polynomials and let it be zero. We 
can obtain the following twenty seven solutions [25-46] 

APPLICATIONS 

STO equation by (m+G’/G) 

Where A and B are two non-zero real constants and Satisfies B2 − A2 > 0 
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Figure 1: Solution of (17) when p = 3, r = 2, q = 1, κ = 0.08, µ = 0.8, c = 2.5, 
0 

 

Consider the space-time fractional order STO equation 

Dαu(x, t) + 3κ(Dβu(x, t))2 + 3κuu2(x, t)Dβu(x, t) 

t x x 

+ 3κu(x, t)D2βu(x, t) + κD3βu(x, t) = 0, t >, 0 <α, β≤ 1 (8) 

Using the transformation 

 
u(x, t) = U (ξ) (9) 

d = 0.05, β = 2.  
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((8)) can be changed into an ODE eq uation 

− ′ 2    ′ 2 2  ′ 2 
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lµu +3κµ (u ) +3κµU U +3κµ UU +κµ3U   =0 (10) 

Using the balance principle we get n = 1, so eq. (4) reduces to 

U (ξ) = c−1(m + F )−1 + c0 + c1(m + F ) (11) 

After solving the algebraic equations of (10) we obtained variety of solutions 
as follows: 

Case 01 

c1=µ d2(r−1)−dp+q ,c0=c0,c1 =0, 

l=κ−3c 
0
µ(p−2d(r−1))+3c2+µ23d2(r−1)2−3dp(r−1)+p2−qr+q (12) 

Case 02 

c−1 = 0, c1 = µ−µr, 

l = κ−3c0µ(p − 2d(r − 1)) + 3c2 + µ2 3d2(r − 1)2 − 3dp(r − 1) + p2 −qr + q (13) 

Case 03 

c−1 = 2µ d2(r − 1) −dp + q , c1 = 0, c0 = µ(p − 2d(r − 1)), 

l = κµ2 p2 − 4q(r − 1) (14) 

Case 04 

c−1= µ d2(r−1)−dp+q,c1= µ−µr,c 
0
= 0,l= κµ2p2−4q(r−1) (15) 

Case 05 

c−1=0,c1=−2(µr−µ),c
0
=µ(−(p−2d(r−1))), l=κµ2p2−4q(r−1) (16) 

Solution 1 

(Corresponding case 01) 

Type 01: When p2 − 4q(r − 1) > 0 and p(r − 1) /= 0 (orq(r − 1) =/ 0) the 
solution of Eqs(10) 

Figure 2: Solution of when (17) when p=3, r=2, q=1, κ=0.08, µ=0.8, c =2.5, 

d=0.05, β=2. 
 

 

Figure 3: Solution of when (17) when p=3, r=2, q=1, κ=0.08, µ=0.8, c0=2.5, 

d=0.05, β=2. 
 

 

Figure 4: Solution of when (17) when p=3, r=2, q=1, κ=0.08, µ=0.8, c0=2.5, 

d=0.05, β=2. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Solution of when (17) when p=3, r=2, q=1, κ=0.08, µ=0.8, c0=2.5, 

d=0.05, β=2. 
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Figure 7: Solution of (29) when p=1, r=2, q=1, κ=0.06, µ=0.5, c =4.5, d=0.08, 
0 
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Figure 6: Solution of (29) when p=1, r=2, q=1, κ=0.06, µ=0.5, c =4.5, d=0.08, 

β=2. 
 

 
Figure 8: Solution of (29) when p=1, r=2, q=1, κ=0.06, µ=0.5, c0 =4.5, d=0.08, 
β=2. 

 

Figure 9: Solution of (29) when p = 1, r= 2,q = 1, κ= 0.06, µ = 0.5, c0 = 4.5, 
d = 0.08, β= 2. 

 

 
Figure10: Solution of (29) when p=1, r=2, q=1, κ=0.06, µ=0.5, c0=4.5, d=0.08, 

β=2. 

β=2. 
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Solution 04 (Corresponding case 04) 

Type:04 When (r-1)/=0andq=p=0the solutions of Eqs(10) 

1 

u27(x,t)=c0−µ(r−1)(d−rξ+c) (70) 

Applications 

4 Kdv-ZK equation by (m + G
′
/G) 

Space-time fractional Kdv-ZK equation 

consider the space-time fractional Kdv-ZK equation [19] 

D
α
u + auux+ uxxx+ c(uyyx+ uzzx) = 0, t >, 0 <α ≤ 1 (71) 

and the transformation 

(72) 
 

Where κis nonzero constant,which on substituting in (71) give us the 
following ODE 

−κU′+aUU′+(1+2c)U′′′=0 (73) 

U(ξ)=c− (m+F)−1+c +c (m+F)+c (m+F)−2+c (m+F)2 (74) 
1 

Case 01 
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