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ABSTRACT

A new numerical method is given for solving 3D inverse scattering problem (ISP) 
with non-over-determined scattering data. No such results were known. The ISP is 
not solved by a parameter fitting procedure. The method is based on the author’s 
uniqueness theorem. The data are the values of the scattering amplitude for all 

2Sββ ∈ , where 2Sβ  is an open subset of the unit sphere S2 in ℝ3, α0 ∈ S2 is fixed, 
and all k ∈ (a,b), where 0 ≤ a < b. The basic uniqueness theorem for solving 

the inverse scattering problem with non-over-determined scattering data belongs 
to the author. Earlier there were no results on numerical methods for solving 
the inverse scattering problem with such data. The proposed numerical method 
for solving the inverse scattering problem is original. It is based on the author’s 
uniqueness theorem and on his method for stable solution of ill-conditioned 
linear algebraic systems. Since the inverse scattering problem is non-linear, it is of 
prime interest that the basic step of the proposed inversion procedure consists of 
solving linear algebraic system.
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The inverse scattering problem consists of finding the unknown potential 
q(x) from the scattering data. These data are the values of the scattering 

amplitude A(β, α, k) at some values of β, α, k. The inverse scattering 
problem is a major theoretical problem of physics which has huge practical 
significance. 

The basic uniqueness theorem for solving the inverse scattering problem with 
non-over- determined scattering data belongs to the author [1]. This result 
was not known for decades. There were no results on numerical methods for 
solving the inverse scattering problem with non-over-determined data.

The inverse scattering problem is highly non-linear because the scattering 
amplitude depends non-linearly on the potential. Therefore, it is remarkable 
that the inversion procedure proposed in this paper is linear: it is reduced to 
numerical solution of a linear algebraic system, see system below. No such 
results were known. The ISP is not solved by a parameter fitting procedure. 
The numerical method is based on the author’s uniqueness theorem [1].

The scattering solution is the unique solution to the following problem:
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where v is the scattered field satisfying the radiation condition, 
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where α, β ∈ S2, S2 is the unit sphere, β is the direction of the scattered 
wave, α is the direction of the incident wave, k2 > 0 is energy, k > 0 is a 
constant. The function A(β, α, k), the scattering amplitude, can be measured 
experimentally. Let us call it the scattering data. 

We assume throughout that q is a real-valued compactly supported function 
with support D, q = 0 for x ∈ D⊂{ }: max | |j jx x R≤ , and q is C1-smooth. The 
set of such q let us call Q.

It is known that the solution to the scattering problem (equations 1-3) does 
exist and is unique.

The inverse scattering problem (IP) consists of finding ∈ Q from the 
scattering data.

It was first proved by A.G. Ramm’s [2,3] that q ∈ Q is uniquely determined 
by the scattering data A(β, α, k

0
) known for a fixed k = k

0
 > 0 and all β ∈ Sβ

2 
and all α ∈ Sα

2, where Sβ
2 is an open subset of S2. 

Ramm gave a method for solving inverse scattering problem with fixed-energy 
data and obtained an error estimate for the solution for exact data and also 
for noisy data [3,4]. 

The goal of this paper is to give a numerical method for solving the inverse 
scattering problem with non-over-determined scattering data. The non-over-
determined scattering data are the data that depend on the same number of 
variables as the potential, that is, on three variables. In this paper we assume 
that these data are the values of A(β, k) := A(β, α0, k) known for all β ∈ Sβ

2, 
for all k ∈ (a, b), 0 ≤ a < b, and a fixed α0 ∈ S2.

Our method for solving this inverse scattering problem is described in 
Section 2. This problem is reduced to solving linear algebraic system which 
is very ill-conditioned.

Therefore, numerically one should use DSM (Dynamical Systems Method), 
a stable method for solving linear algebraic system (equation 8) (or other 
stable methods for numerical solution of ill-conditioned linear algebraic 
systems) [5,6]. Stable solution of equation 8 is the main numerical difficulty 
of our method. This method is not a parameter fitting method, which is a big 
advantage of the method. There were no numerical methods for solving the 
inverse scattering problem with non-over-determined data. The theoretical 
basis for our paper is the uniqueness theorem proved by the author [1]. 

Inversion method

The scattering problem is equivalent to the standard integral equation [3]:
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where the integral is taken over the support of q(x) and the dependence on 
the fixed vector α0

 is dropped in what follows. Define

h := q( x )u( x , k)                         (5)

Equation (4) implies the following equation for h:
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From (4) one derives the following exact formula for the scattering amplitude:
.4 ( , ) ( . ) ,ik y
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where β ∈ S2 and k ∈ (a, b). Recall that we write A(β, k) for A(β, α0, k) and 
h(x, k) for h(x, α0, k).

 If A(β, k) is known, then equation (7) is a linear integral equation of the first 
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kind with respect to the unknown h(y, k). If h is found, then q can be found 
by formula (9) below.

Let us partition the support of q into a union of P small cubes ∆p. Choose a 
point y

p
 ∈ ∆p, 1 ≤ p ≤ P, in each of the small cubes. Denote by ∆ the volume 

of each small cube. Choose P different points km ∈ (a, b), 1 ≤ m ≤ P. Denote 
h

pm
 := h(y

p
, k

m
). Choose P different vectors β

j
 ∈ 2Sβ , 1 ≤ j ≤ P. Discretize 

equation (7):
.
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where ∆ is the element of the volume of the support of q.

Equation (8) is a linear algebraic system of P2 equations for P2 
unknowns h

pm
, 1 ≤ p, m, j ≤ P. If this system is solved numerically, 

then equation (6) yields the values q(x
p
) of the unknown potential:           
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where 1 ≤ p ≤ P, and the right side of equation (9) should not depend on m 
or j. 

Although the right side of equation (9) does not depend on j explicitly, it 
does depend on j implicitly since there is a dependence on j in equation (8), 
so that the solution h

pm
 of equation (8) does depend on j. 

The independence of q(x) and, therefore, the right side of equation (9) on m 
and j is an important requirement in the numerical solution of the inverse 
scattering problem, a compatibility condition for the data. This requirement 
is automatically satisfied for the limiting integral equation formula:
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which follows from equation (6)?

The values q(y
p
) essentially determine the C1-smooth potential q if the 

distance between the neighboring points y
p
 is sufficiently small.

The linear algebraic system (8) is very ill-conditioned because it comes from an 
integral equation of the first kind with an analytic kernel. From the author’s 
uniqueness theorem it follows that the non-over-determined scattering data A(β, 
k) determine uniquely the potential q ∈ Q, see [2]. 

Thus, one expects that the proposed method can be numerically efficient 
if the linear algebraic system (8) is solved stably. Theoretical methods for 
stable solution of linear algebraic systems are developed which finds many 
numerical examples of such solutions [5,6].

There were no numerical methods for solving the inverse scattering problem 
with non- over-determined data, as far as the author knows.

One can choose βj
 and k

m
 so that the determinant of the linear algebraic 

system (8) is not equal to zero, so that the system is uniquely solvable. This 
does not eliminate the essential difficulties in numerical solution of the 
inverse scattering problem caused by the numerical difficulties in solving 
severely ill-condioned linear algebraic systems.

In conclusion let us prove the following lemma.

Lemma 1 There exist β
j
 ∈ 2Sβ  and k

m
 ∈ (a, b), 1 ≤ j, m ≤ P, such that

.det( ) 0m j pik ye β− ≠ .

In this lemma the matrix depends on m, p. The index j enters as a parameter, 
1 ≤ m, p ≤ P, 1 ≤ j ≤ P.

Proof of Lemma 1. Let β
j
 ∈ 2Sβ  be arbitrary fixed, 'p p≠  if 'p p≠ and 

': .   'pj j p p jb y b if p pβ= ≠ ≠ . Let us prove that there are ( , ),1 ,mk a b m P∈ ≤ ≤  

such that det( ) 0.m pjik be− ≠  Assume the contrary. Then det( ) 0m pjik be− = for 
any choice of k

m
 The function pjikbe− is analytic (entire) with respect to k . 

Therefore, if the above determinant vanishes for all 1k k= , then it vanishes 

identically with respect to k , so that the set of function 1{ }pjikb P
pe =  is linearly 

dependent. This is a contradiction since the above set is linearly independent 
under our assumption, namely the assumption that '   '.pj p jb b if p p≠ ≠  
Indeed, if pc  are constants and 1
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pp

c e−

=
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analyticity, 
1

0pjP sb
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=∑ for all s ∈ R. Since all numbers pjb are different and 

real-valued, they can be ordered. Let us assume without loss of generality 

that 1 2 ..... pb b b> > , where :p pjb b= Then, the relation 1( )
1 2
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s → +∞ yields 1 0c = . Similarly one proves that c
p
=0 for all p. This contradicts 

to the linear dependence of the system. Lemma 1 is proved.
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