
Materials scientists increasingly employ machine 
or statistical learning (SL) techniques to accel-

erate materials discovery and design. Such pursuits 
benefit from pooling training data across, and thus 
being able to generalize predictions over, k-nary 
compounds of diverse chemistries and structures. 
This work presents a SL framework that addresses 
challenges in materials science applications, where 
datasets are diverse but of modest size, and extreme 
values are often of interest. Our advances include 
the application of power or Hölder means to con-
struct descriptors that generalize over chemistry 
and crystal structure, and the incorporation of mul-
tivariate local regression within a gradient boosting 
framework. The approach is demonstrated by de-
veloping SL models to predict bulk and shear moduli 
(K and G, respectively) for polycrystalline inorganic 
compounds, using 1,940 compounds from a grow-
ing database of calculated elastic moduli for metals, 
semiconductors and insulators. The usefulness of 
the models is illustrated by screening for superhard 
materials. In recent years, first-principles methods 
for calculating properties of inorganic compounds 
have advanced to the point that it is now possible, 
for a wide range of chemistries, to predict many 
properties of a material before it is synthesized in 
the lab1. This achievement has spurred the use of 
high-throughput computing techniques as an engine 
for the rapid development of extensive databases 
of calculated material properties. Such databases 
create new opportunities for computationally-as-
sisted materials discovery and design, providing for 

a diverse range of engineering applications with cus-
tom tailored solutions. But even with current and 
near-term computing resources, high-throughput 
techniques can only analyze a fraction of all possible 
compositions and crystal structures. Thus, statistical 
learning (SL), or machine learning, offers an express 
lane to further accelerate materials discovery and 
inverse design.  As statistical learning techniques ad-
vance, increasingly general models will allow us to 
quickly screen materials over broader design spaces 
and intelligently prioritize the high-throughput anal-
ysis of the most promising material candidates.

One encounters several challenges when applying 
SL to materials science problems. Although many 
elemental properties are available, we typically do 
not know how to construct optimal descriptors for 
each property, over a variable number of constitu-
ent elements. For instance, if one believes that some 
average of atomic radii is an important descriptor, 
there are many different averages, let alone possible 
weighting schemes, that one might investigate. This 
challenge may be reduced by placing restrictions 
on the number of constituent elements or types of 
chemistries or structures considered, but such re-
strictions reduce the generalizability of the learned 
predictor. Materials science datasets are often also 
smaller than those available in domains where SL 
has an established history. This requires that SL be 
applied with significant care in order to prevent 
over-fitting the model. Over-fitting leads to predic-
tions that are less generalizable to new data than 
anticipated, such that predictions are less accurate 
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than expected. At the same time, smaller datasets 
challenge us to use the available data as wisely as 
possible. This may include leveraging observations 
related to the smoothness of the underlying physi-
cal phenomenon, and the use of an appropriate risk 
criterion, rather than partitioning the available data 
into distinct training and test sets. For SL to have the 
greatest impact on materials discovery and design, 
we must pursue techniques that make maximal use 
of the available data. This requires approaches that 
are capable of systematically pooling training data 
across, and are thus capable of generalizing predic-
tions over, k-nary compounds of diverse chemistries 
and structures.

The successful application of SL requires the selec-
tion of an appropriate set of descriptor candidates. In 
materials science problems, the candidates must be 
capable of both “uniquely characterizing” a diverse 
range of compounds, and sufficiently explaining the 
diversity of the phenomenon being learned. Thus, 
the selection of descriptor candidates is a crucial and 
active field of investigation within materials science, 
as the field endeavors to develop general models 
with high predictive accuracy. Previous work in ma-
terials science has included both categorical descrip-
tors and continuous descriptors. Although both types 
of descriptors may be legitimately used in SL, special 
care should be taken when using categorical descrip-
tors, as each such descriptor essentially (i.e., unless 
there is sufficient smoothing across cells) partitions 
the space of compounds into disjoint cells, which 
quickly increases the degrees of freedom and thus 
the risk of over-fitting the model.

SL applications should always include descriptor 
candidates suggested by known, scientifically rele-
vant relationships. But in order to construct models 
that accurately generalize across diverse datasets, 
such candidates will typically need to be augment-

ed with additional descriptor candidates, capable 
of bridging across the simplifying assumptions that 
divide less generalizable models. Without these ad-
ditional candidates, attempts to learn more gener-
al models will be stifled, as it will be impossible to 
discover new, unexpected relationships. Here we 
introduce the use of Hölder means, also known as 
generalized or power means, as an ordered approach 
to explicitly constructing descriptor candidates from 
variable length numeric lists. Hölder means describe 
a family of means that range from the minimum to 
maximum functions, and include the harmonic, geo-
metric, arithmetic, and quadratic means. This paper 
advances previous work by constructing descriptor 
candidates as Hölder means, which, to the best of 
our knowledge, has not previously been done in the 
field of materials science.

Having discussed the construction of descriptor 
candidates, we now introduce gradient boosting 
machine local polynomial regression, which is a SL 
technique that we developed to leverage the avail-
able data as wisely as possible. Energy minimization 
problems often enforce smoothness in the functions 
mapping useful descriptors to outcomes. Statistical 
learning techniques may exploit such smoothness, 
when present, in order to produce models that are 
as accurate as possible for a fixed amount of training 
data; such considerations are more important when 
working with smaller training datasets than with 
larger datasets. GBM-Locfit utilizes multivariate lo-
cal polynomial regression, as implemented in Locfit, 
within a gradient boosting machine framework. Local 
polynomial regression performs a series of weighted 
regressions within a moving window, with a weight 
function that gives greatest weight to observations 
near the center of the window, producing a smooth 
curve that runs it.
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